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Degree landscapes in scale-free networks

Jacob Bock Axelsen,l’* Sebastian Bernhardsson,2 Martin Rosvall,2 Kim Sneppen,3 and Ala Trusina®
1NBI, Blegdamsvej 17, Dk 2100, Copenhagen, Denmark
2Deparl‘ment of Theoretical Physics, Umeda University, 901 87 Umed, Sweden
’NBI, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
(Received 16 December 2005; revised manuscript received 14 August 2006; published 26 September 2006)

We generalize the degree-organizational view of real-world networks with broad degree distributions in a
landscape analog with mountains (high-degree nodes) and valleys (low-degree nodes). For example, correlated
degrees between adjacent nodes correspond to smooth landscapes (social networks), hierarchical networks to
one-mountain landscapes (the Internet), and degree-disassortative networks without hierarchical features to
rough landscapes with several mountains. To quantify the topology, we here measure the widths of the moun-
tains and the separation between different mountains. We also generate ridge landscapes to model networks
organized under constraints imposed by the space the networks are embedded in, associated to spatial or in

molecular networks to functional localization.
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I. INTRODUCTION

The broad degree distribution in many real-world net-
works [1-4] makes it meaningful to investigate the topologi-
cal organization of nodes in terms of their degree. It has been
found that many social networks are assortative, with corre-
lated degrees of adjacent nodes, but that technological and
biological networks often are disassortative, with anticorre-
lated degrees of adjacent nodes [5—8]. The degree correlation
profile, generated by comparison between the network and
its randomized counterparts without degree correlations, un-
covers in the Internet an over-representation of links between
intermediate- and low-degree nodes and a slight over-
representation of links between the nodes of highest degrees
[9]. Contrary, most biological networks have a suppression
of links between the hubs [10]. To characterize the organiza-
tion beyond correlations between adjacent nodes, Trusina et
al. [11] introduced the hierarchy measure F. Fe (0,1], is
the fraction of shortest paths between all pairs of nodes that
are degree hierarchical [12]. A degree hierarchical shortest
path has node degrees sorted monotonously or in an ascend-
ing order followed by a descending order. It was found that
biological networks with decentralized hubs stand out from
other networks with a very low value of F.

Here we generalize the presented findings in a landscape
analog, with mountains (high degree nodes) and valleys (low
degree nodes). Qualitatively, the landscape analog can be
considered as a mapping of constraints to move in a network,
since the altitude can be interpreted as the density of random
walkers on these nodes (with nodes as states and links as
transition possibilities between different states [13]). With
this interpretation, social networks form smooth landscapes
without separated mountains, like the Internet with a single
mountain with first ascending and then descending hierarchi-
cal paths, whereas biological networks form rough land-
scapes with several separated mountains and broken hierar-
chical paths.
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To quantify the constraints imposed by the topology be-
yond correlations between adjacent nodes, we in this paper
also measure the typical width of individual mountains and
the separation between different mountains (Fig. 1). In this
way we bring the landscape analog to a meaningful quanti-
fication of network topologies.

We also suggest a method to generate ridge landscapes
[Fig. 2(c)]. In its simplest implementation, we assign a ran-
dom rank to every node in a network, and organize the nodes
hierarchically based on their rank. This method creates non-
random networks, distinguished by a separation of hubs (dis-
assortative with low F). We argue that error proned ridge
landscapes can represent networks organized under different
spatial constraints put on real-world networks during their
evolution.

II. BACKGROUND ON DEGREE CORRELATIONS
AND WALKS ON NETWORKS

The fact that the degree distribution in many real-world
networks follows a broad distribution [1], with a significant
number of nodes having very many links, opens for investi-
gation of the topological organization of nodes in terms of
their degree. This investigation becomes meaningful when

FIG. 1. (Color online) Degree landscape of a network with
mountains and valleys, with the altitude of a node proportional to its
degree. A route over one mountain corresponds to making a degree-
hierarchical path [(a) to (b)] while climbing over more than one
mountain breaks the degree-hierarchical path [(a) to (c)].
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FIG. 2. (Color online) Visualization of degree landscapes of networks organized from ridge landscapes (c), via random landscapes (e), to
peaked one-mountain landscapes (g). The links are pairwise swapped to connect high-ranked nodes to organize the nodes globally according
to their rank (color coded from dark red for high rank, to light white for low rank), with random swaps at different rates €. The rank is set
randomly to the nodes, as in the swap example in (a), in (c) and (d), and proportional to the degree of the nodes, as in the swap example in
(b), in (f) and (g). The random network in (e) corresponds to e=1. The corresponding visualization of the degree landscapes are color coded
according to altitude from black (low) to white (high). The networks are scale-free with an exponent y=2.5 and of size N=400, originally
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generated with the algorithm suggested [11]. The layout is generated with the Kamada-Kawai algorithm in Pajek [14].

the degree of a node is a proxy for the function of the node in
the network [15].

For example, a natural question to ask is whether nodes of
similar degree are or are not connected with each other. To
answer this question Newman introduced the assortativity
measure [5-7]. A network is said to show assortative mixing
if nodes with many links tend to be connected to other nodes
with many links in the network. Oppositely, if the nodes with
many links tend to be connected to nodes with few links, the
network is said to show disassortative mixing. It was found
that several types of social networks of collaborations are
assortative, and that technological and biological networks
tend to be disassortative.

To be able to answer how the degrees in a network are
correlated in more detail, Maslov and Sneppen introduced
the degree-correlation profile [10]. An ensemble of null mod-
els are generated by randomizing the neighborhoods while
keeping the point properties of the nodes. More precisely, if
the degree of node i is k; then this number is kept constant,
but the neighbors of i are exchanged. The algorithm obtains
this by repeatedly taking two randomly chosen links and
swap one node on the first link with a node on the second
link. The correlation matrix is then calculated by taking the
ratio of the probability of k;-degree nodes having friends of
degree k; in the observed network to the probability given by
the average of the randomized ensemble: P(k;,k;)/ Pg(k;.k;).
In this way it was identified that biological networks display
a negative correlation of nodes of high degree with them-
selves, and a positive correlation between high and low de-
gree nodes. Contrary, the Internet showed an over-
representation of links between intermediate- and low-degree

nodes and a slight over-representation of links between the
nodes of highest degrees.

So far we have discussed local correlations. However, the
position of a node in a network is not solely defined by its
immediate neighbors. For example, communication in net-
works can extend to the whole network, like in the Internet.
Therefore it also makes sense to ask which role the organi-
zation of the nodes in terms of their degrees plays in a global
perspective. One way to attack this question is to study ran-
dom walks as proxies for communication in the network.

Depending on the topology of the network, random walk-
ers will either quickly visit nodes in distant parts of the net-
work or perhaps stay for longer periods in local neighbor-
hoods. However, the frequency at which a random walker
will visit a node is proportional to the degree of the node
[16]. The degree will therefore be a proxy for how central a
node is in terms of communication in a network.

Eriksen et al. considered an approximation of this flow of
random walkers, and showed that the Internet is highly
modular with the U.S. military and the Russian military at
the extreme ends [13].

Another way to approximate global signals in a network
is to consider its hierarchical organization [17], and assume
that signals follow hierarchical paths [11,12]. Consider only
a shortest path s between two nodes i=s(1) and /=s(n). Let
the rank of node i be r;, proportional to the degree of node i,
ri=k;, and study the degree sequence on the shortest path
{k,x-(l)’ks(Z)’"'vkx(n—l)skx(n)} from S(])Zl to s(n):l. The
shortest path is said to be degree hierarchical if the node
degrees are sorted monotonously or in an ascending followed
by a descending order (ky)<-:<kg )= ... Sk
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where a+b=n and a,b>0). Moreover, the hierarchy mea-
sure F is the number of degree hierarchical shortest paths
divided by the total number of shortest paths in the network.
It was found that the Internet and a network of CEOs in the
U.S. are highly hierarchical. Contrary, a protein-protein in-
teraction network in yeast turned out to be highly antihierar-
chical when compared with its random counterpart [11]. This
observation stimulated our search for a process responsible
for reorganizing a network with a broad degree distribution
into such a topology.

III. RANK-HIERARCHICAL LINK SWAPPING

We here start by reviewing the method presented by Tru-
sina et al. [11] to generate degree-hierarchical networks. The
networks evolve by pairwise rewirings of the links, with ev-
ery rewiring constrained by the rank of the nodes involved in
the rewiring. The rank of a node is proportional to its degree
in the degree-rank hierarchy [see Fig. 2(b)], and set to a
random rank (degree independent) in the random-rank hier-
archy [see Fig. 2(a)]. At every time step, two random links
are chosen and reconnected such that the two nodes with the
highest ranks become adjacent. In this way the degree of
every node is kept constant and the nodes are globally orga-
nized in decreasing rank order.

To be able to investigate networks in between, respec-
tively, the random-rank hierarchies, the degree-rank hierar-
chies, and random networks, we also allow for random link
swaps without the constraints set by the rank of the nodes. To
make a random link swap with probability & corresponds in
this way to an error rate in the creation of the extreme net-
works. When € — 1 the methods become equivalent to the
randomization of networks with remaining degree sequence
suggested in Ref. [10], see Fig. 2(e).

Figure 2 shows topologies generated with the different
models. They all originate from a random scale-free network
[shown in Fig. 2(e)] with degree distribution P(k) k2> and
system size N=400, generated with the method suggested in
Ref. [11]. The extreme networks, the perfect random-rank
hierarchy in Fig. 2(c) and the perfect degree-rank hierarchy
Fig. 2(g) (£=0), surround the networks with increasing error
rates toward the random scale-free network with e=1 in the
middle [Fig. 2(e)]. The perfect degree-rank hierarchy con-
sists of a tightly connected core of large degree nodes that
forms a very peaked mountain in the degree sequence of all
shortest paths (F=1). This property will lead most layout
algorithms to place the hubs at the center of the figure. Here,
we have employed the Kamada-Kawai algorithm of the pro-
gram Pajek [14], which ensures that no two nodes are pro-
jected on top of each other.

The random-rank hierarchy, on the other hand, forms a
very stringy and nonrandom structure—a ridge landscape.
The length of the string is of the order D« N, with very long
pathways that break the small-world property found in most
real-world networks. However, as for the original small-
world scenario proposed by Ref. [18], the large diameter of
the stringy scale-free networks collapses if small perturba-
tions exist in the hierarchical organization. If we generate the
network with a small error rate g, the diameter of the net-
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work collapses as seen in Fig. 2(d). Note that the color gra-
dient indicates that the random-rank hierarchy is still intact at
this stage, and that the hubs (local mountains) are separated.
The degree-rank hierarchy in Fig. 2(f) is rewired with a
higher error rate £=0.5, while still maintaining a high level
of hierarchical organization.

In both cases, the two organizing principles leads to
higher clustering [18], with more loops of length 3 and
longer [19], than in the random counterparts (not shown).
The organization along an arbitrary coordinate tends to make
friends of friends more alike up to the limit set by the width
of the mountains.

In Fig. 2, we also quantify the degree-hierarchical organi-
zations of the scale-free networks organized by, respectively,
degree rank and number rank. For the random scale-free net-
work with degree distribution P(k)><k>> and N=1000
nodes, F=0.83+0.05. The networks organized hierarchically
according to degree rank [as in Fig. 2(b)] have F=1 as ex-
pected. Further, when introducing a finite error rate & for link
rewirings toward the degree hierarchy we find that its topol-
ogy is robust in the sense that both diameter (not shown) and
JF remain unchanged for even quite large errors. The perfect
random-rank hierarchy has a much lower degree-hierarchical
organization, 7=0.13+0.05. Because of the collapsing diam-
eter, the random-rank hierarchy is not as robust as the
degree-rank hierarchy to errors in the rewiring.

Figure 3 visualizes, in increasing degree-hierarchical or-
der, the degree landscapes of a number of real-world net-
works: Yeast in (a) is the protein-interaction network in Sac-
charomyces Cerevisia detected by the two-hybrid experiment
[20], Manhattan in (b) is the dual map of Manhattan with
streets as nodes and intersections as links [21], and the Inter-
net in (¢) is the network of autonomous systems [22]. Inter-
net and Manhattan consist of one single mountain with first
ascending and then descending hierarchical paths, whereas
yeast forms a rough landscape with several mountains and
broken hierarchical paths.

IV. MEASURING DEGREE LANDSCAPES

To bring the landscape analog to an insightful quantifica-
tion of network topologies (independent of the means of vi-
sualization), we introduce two measures. First, inspired by
the information horizons in networks [23-25], we present a
revised hierarchy measure F({), to estimate the size of the
mountains. F({) is the fraction of pairs of nodes at distance
¢ that are hierarchically connected. Figure 4(a) shows that
F(€) decreases fastest for the random-rank hierarchy at a
length scale €~4 corresponding to the width of the ridge
landscape shown in Fig. 2(c). Figures 4(b)-4(d) shows the
real-world networks as in Fig. 3 compared with their random
counterparts with the same degree sequence. Yeast behaves
qualitatively like the random-rank hierarchy with & between
0 and 0.1, which probably reflects some functional localiza-
tion. Contrary, despite their embedding in real space, the
Internet and Manhattan both have a substantial fraction of
long degree-hierarchical paths, corresponding to wide moun-
tains. However, the randomized counterparts of the two latter
networks, with more peaked mountain landscapes, are both

036119-3



AXELSEN et al.

(a) Yeast

954 nodes 1249 links
(b) Manhattan

642 nodes 3522 links
(¢) Internet

6474 nodes 12572 links

(b)

FIG. 3. Visualization of degree landscapes of real-world net-
works. The coloring of the altitudes are relative to the summit alti-
tude. Yeast in (a) is the protein-protein interaction network in Sac-
charomyces Cerevisia [20], Manhattan in (b) is the dual map of
Manhattan with streets as nodes and intersections as links [21], and
the Internet in (c) is the network of autonomous systems [22]. The
topological maps are not based on the real space the networks are
embedded in, but the Kamada-Kawai algorithm in Pajek [14].

more degree hierarchical than the real networks.

We define the width of a mountain as the length where
50% of the paths are hierarchical. Figure 4 shows that the
average width of the mountains in the random-rank hierarchy
and yeast is about 4. In Manhattan and the Internet it is
larger, about 6, and in the degree-rank hierarchy it is by
definition the network diameter.

In the second landscape measure, we measure the separa-
tion between mountains to investigate how the hubs are po-
sitioned relative to each other. d(ky,;,) is associated to maxi-
mum distances between nodes with degree k equal to or
larger than the threshold value k. It is defined by the dis-
tance from one hub to its most distant hub in the network,
averaged over all hubs

1
d(khub) = E max dij’ (1)
=k filk =kt 1=t

with d;; being the length of the shortest path between i and j,
and k; the degree of node i. The value of d(ky,,) is highly
dependent of the definition of a hub, and we therefore mea-
sure d(ky,,) for all values of ki,

Figure 5 shows d(ky,,) for a few different networks and
their random counterparts. Figure 5(a) shows that the one-
mountain landscapes, the degree-rank hierarchy and the ran-
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FIG. 4. (Color online) The degree-hierarchical organization as a
function of path length. F({) is the fraction of pair of nodes, sepa-
rated by a distance ¢, that are connected by a degree-hierarchical
path. (a) shows the two model networks: The degree-rank hierarchy
(degree-rank), the random-rank hierarchy (random-rank) for £=0
and 0.1, together with the random scale-free network (random). The
real-world networks in (b)—(d) are the same as in Fig. 3. All net-
works are compared with their random counterparts (Rand).

dom network, both have hubs tightly connected. Contrary,
the hubs in the perfect random-rank hierarchy are extremely
separated [d(1)=100] all the way out to a very high hub-
threshold value (curve not shown). All the real-world net-
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FIG. 5. (Color online) Hub separation in networks measured as
the average longest distance d(ky,,,) between all nodes of degree k
= ks Eq. (1), for the same networks as in Fig. 4. The results are
log, binned.
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works in Figs. 5(b)-5(d) fall in between these extremes, but
with a higher d(k;,;,) than randomly expected for most values
of kp,p- Manhattan [Fig. 5(c)] and the Internet [Fig. 5(d)] are
close to random for high degrees, while yeast [Fig. 5(b)] has
a separation for all sizes. The close resemblance between the
random-rank hierarchy and yeast in Figs. 4 and 5 suggests
that the separation of hubs probably reflects a separation of
functions at all scales.

Manhattan is mainly a planned city where the largest
hubs, corresponding to streets and avenues, are connected to
each other in a bipartite way. This results in a d(k,;,) close to
2 for the largest hubs. The Internet is constructed with a
hierarchical structure within each country, and all
intermediate-degree nodes (typically connected to low de-
gree nodes [9]) are therefore separated from each other glo-
bally. However, the largest hubs interconnect the countries,
and are therefore connected with each other. This results in a
d(kpyp) close to 1 for the largest hubs.

V. CONCLUSION

To summarize, with the starting point that the hubs play
an important role in the network function, we have asked
how the hubs are positioned relative to each other in different
networks. The approach was to generalize the degree-
organizational view of real-world networks with broad de-
gree distributions, illustrated in a landscape analog with
mountains (high degree nodes) and valleys (low degree
nodes). We have also generated ridge landscapes to model
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networks organized under constraints imposed by the space
the networks are embedded in, associated to spatial or in
molecular networks to functional localization. By ordering
nodes associated to random numbers, we present a simple
way of taking classification of nodes into account and the
constraints this sets on the network topology.

To quantify this connection between function and topol-
ogy in the illustrative landscape analog, and to be able to
compare real-world networks, we have measured the widths
of the mountains and the separation between different moun-
tains. We found that the dual map of Manhattan consists
approximately only of one mountain. This implies that typi-
cal navigation between a source and a target street in the city
involves first going to larger and larger streets, and then to
smaller and smaller streets. The Internet shares this one-
mountain landscape, and a routed package will experience
the same landscape. But, since the spatial constraints are
weaker in the Internet, the width of the mountain is about the
same as in the city despite the substantially larger network.
Finally, the topological landscape in the protein-interaction
network in yeast has a different topology with numerous
separated hills, which probably corresponds to functional lo-
calization. This suggests that signals within the compart-
ments dominate over global signaling.
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